Home > How-tos, Storage, VMware > VMware Labs – iSCSI Shared Storage how-to using the HP P4000 LeftHand VSA [Part 1/2]

VMware Labs – iSCSI Shared Storage how-to using the HP P4000 LeftHand VSA [Part 1/2]

January 24th, 2012 Leave a comment Go to comments

 

iSCSI Shared Storage for your Lab

 

I have had a few people asking how I set up my Shared iSCSI storage for my own VMware Lab environment I run at home – the same lab I used to study for my VCP 4 and VCP 5 exams. So, I thought I would write up a blog post detailing how to go about setting this up and trying it out for yourself.

 

You have NFS shared storeage up and running for your ESXi hosts in your lab, but what about iSCSI? There are many different options out there. Here are a few I can think of off the top of my head:

 

  • FreeNAS VM
  • OpenFiler VM
  • HP P4000 Lefthand VSA trial
  • Hardware based – for example Iomega StorCenter IX2 series or QNAP NAS device

 

The last two options (hardware based are less feasible for a lab environment as you ideally don’t want to pay for something you will be testing. That being said, I was quite keen on the HP P4000 LeftHand VSA, as it offers the same kind of interface that you would use with the actual hardware version as well as some really cool enterprise-like features, such as clustering. In fact, as I understand, many businesses actually use the P4000 VSA in production – it was in the game before VMware came out with their own Virtual shared storage solution. Both of these solutions actually provide highly available shared storage for your ESXi hosts. Anyway, enough of the small talk – lets get on to setting up some shared iSCSI storage for our ESXi hosts to use for running Virtual Machines.

 

Deciding where to run your P4000 VSA VM

 

First of all download the trial of the HP P4000 LeftHand VSA. Once you are signed up for the free trial, you should get two options – one version for “Laptops” and one for “ESX”. Grab the relevant version – I chose to run my VSA VMs directly in VMware Workstation 8 and allowed my ESXi VMs access to their storage. If you want to run your VSAs as VMs on your ESXi host VMs then grab the “ESX” version. Once you have it downloaded, extract the download into a convenient location. I wanted my VSA to run on faster disks in my home system, so I moved the extracted files to an SSD volume. Remember to take this into consideration for your lab too – VMs will be running on this, so plan your lab VM deployment and storage carefully. Once ready, simply right-click the VSA.vmx configuration file and select “Open with VMware Workstation”. (Or add to Inventory if you are using the ESX version and browsing the VSA with your Datastore Browser).

 

 

Configuration

 

Now that we have the VSA VM inventoried, we need to create some additional virtual disks for it to use (by default it just has a disk used for it’s OS). Right-click the VM and add some disks. There is one important thing you should note here – the disks should be added on SCSI devices 1:0 and onwards. I added 3 x Virtual Disks to my VSA. Note that a storage total of more than 500GB will require your VSA VM to have more than 768 RAM). I chose 3 x 80GB Virtual disks, meaning I would get a RAID5 160GB volume at the end of this exercise. I found out the hard way (troubleshooting a VSA that would not work) that your VSA needs around 1GB or more of RAM if you have more than 500GB of storage on it! Keep this figure under 500GB and you can get away with the default 384MB RAM which is ideal for a home lab. So here are the details I used for each Virtual Disk added (a total of 3 of these):

 

  • New Virtual Disk
  • SCSI (Recommended)
  • Mode -> (Independent) -> Persistent
  • Enter size of disk – for e.g. 80GB
  • Thin provisioned (Leave “Allocate all disk space now” unticked) – to save disk space on those SSDs especially!
  • Store Virtual Disk as a Single File
  • Specify Virtual Disk filename

 

Important: If you didn’t get an option to specify the Virtual Device Node, go back to “Advanced” on each disk and change to device node x, where x is Virtual Device Node SCSI 1:1 to 1:3. (a different node for each disk you added). If you do not specify these selections, then the VSA will not detect your disks or be able to use them.

 

Remeber to use these Virtual Device Nodes for each disk added.

 

Once your disks are added, ensure it is on the right VM network (I used bridged in Workstation for my lab), your network situation will of course vary. Then power up the VSA. Whilst it is powering up, we’ll need to get the HP P4000 Centralized Management Console installed on a “management” PC. In your VSA download you should have also received the installer for this. Simply run the installer and go through the wizard to get this installed.

 

P4000 Centralized Management Console Installer

 

Back to your VSA console, you should now be at the login prompt – type Start to login, then press Enter at the “Login” screen. We’ll now be presented with a menu:

 

 

Navigate to Network TCP/IP Settings and choose your eth0 adapter. Configure a hostname for your VSA – in my example I used “blogvsa.noobs.local”. Don’t forget to set your VSA up to have a static IP address and enter your network details. If you have a DNS server, now would be a good time to also add an A Name Record for your VSA’s hostname and assign it the IP address you configured it with. Accept the network changes for the VSA and wait for it to apply the new settings.

 

Hostname and Network configuration.

 

Now launch your HP P4000 Centralized Management Console from the machine you installed it on, and we’ll begin setting this VSA up. Once open, you should have a few options to the left, and hopefully, the CMC would have already found your new VSA on the network. If not, don’t stress – just use the menu option Find -> Find Systems -> Find. Once the VSA is discovered, you can then close the “Find” window and view the VSA under Available Systems.

 

Expand Available Systems and locate your newly powered up VSA.

 

Next, we’ll create a new Management Group and add the VSA to it. The group will exist on this VSA as it is our only storage system. Right click on the VSA and choose Add to New Management Group. Give the group a suitable name, then click Next. The next screen asks us to create an Administrative user. Enter the details for a new admin account and then click Next. Specify NTP server settings, or set the time manually then click Next. Set up your DNS Server and Domain Name on the next screen, then click Next. If you have an SMTP server to use for email alerts, enter those settings on the next screen, or continue. To keep things simple, on the “Create Cluster” page, select the default “Standard Cluster” option, continue, give it a name, then click Next. The next screen requires you to specify a Virtual IP for Fault Tolerance or load-balanced iSCSI access. Add an IP and the correct subnet mask then click Next. The next screen allows us to create a volume. We have not set up our disks and RAID yet, so check the option to “Skip Volume Creation” and we’ll come back to that afterwards. Finish the wizard and wait for it to create the Management Group and configure everything for you. Once complete, it should auto-login to the Management Group using the admin user you specified for you. Review the summary once complete and close the wizard.

 

Now, expand out your Storage Cluster under the new Management Group and find your VSA system. Select Storage and then click the Disk Setup tab. We’ll now initialize each disk that we added to the VSA earlier and add it to the RAID group for the VSA. Right-click each uninitialized disk and select “Add Disk to RAID“.

 

Add each uninitialized VSA disk to the RAID group.

 

This post is getting a little long now, so I’ll end off this post here with our VSA configured, the Management Group and Cluster set up, and our disks initialized. In the next post [part 2/2], we’ll create a new Volume with these disks and will be setting up our iSCSI initiators from our ESXi hosts as “Servers” in the CMC. After this, we will present the new Volume to our ESXi hosts as an iSCSI LUN and create our VMFS shared storage for vSphere to use. Stay tuned, as part 2 will be coming soon! (Hopefully tomorrow!) See below for the next section:

 

Edit – [part 2/2] is now up – finish off the article here.

 

ERROR: si-captcha.php plugin says GD image support not detected in PHP!

Contact your web host and ask them why GD image support is not enabled for PHP.

ERROR: si-captcha.php plugin says imagepng function not detected in PHP!

Contact your web host and ask them why imagepng function is not enabled for PHP.