SSM and socat Port Forwarding to Access Private VPC Resources

AWS System Manager Session Manager added the port forwarding feature, announced in this blog post back in 2019. In this post I’ll show you how to leverage SSM and socat port forwarding to access systems in a private subnet that don’t have the SSM agent installed.

You’ll use an SSM agent enabled EC2 instance as an initial target for the ssm port forward session. On this instance, you’ll run socat as a relay for the incoming TCP session to the other instance that does not have the SSM agent.

What is socat?

To quote the official man page, socat (SOcket CAT) is a multipurpose relay. It is a command line tool that establishes two bidirectional byte streams and transfers data between them.

You can use it to connect all sorts of channels. For example:

  • files
  • pipes
  • devices
  • sockets, such as TCP, UDP, IPv4, etc
  • SSL sockets
  • programs

SSM and socat Port Forwarding Example

In my example I have an AWS EMR (Elastic Map Reduce) master node running a web dashboard for ganglia in a private VPC subnet.

I don’t want to add a bastion host / jump box or provide SSH access from the public net.

SSM would provide a nice way for me to connect a remote session, or port forward using IAM authentication and negating the need for any ingress security group rules, but only if I had the SSM agent available on this instance.

Seeing as though the EMR master node is not SSM agent enabled, and I can’t use SSM port forwarding directly to this instance, we could use an interim machine with SSM as a jump box.

Example Configuration

Here is how I configured port forwarding in my use case to access ganglia on a private instance EMR node.

  • The EC2 instance with SSM agent must have an IAM policy attached that allows the relevant ssm access. The blog post linked above has instructions. In a nutshell though, most standard Amazon AMIs include the ssm agent. Your EC2 instance profile should include the required actions too. The AmazonSSMManagedInstanceCore managed policy includes these.
  • Install socat on the SSM agent enabled interim machine the private subnet. For this I connected an SSM session to get shell access and ran sudo yum install -y socat
  • Now I needed to open a source channel for the SSM port forward aws cli command to connect, and connect that source to the destination of the EMR master node running ganglia.
socat TCP4-LISTEN:8080,fork,reuseaddr TCP4:

The command listens on port 8080, and forwards TCP to the EMR node, on port 80. Importantly, the command uses fork and reuseaddr to allow multiple connections.

  • Next is to use the AWS CLI ssm start-session command to start a port forwarding session to the interim instance with the SSM agent running. Grab the Instance ID for the EC2 machine and:
aws ssm start-session --target {your-instance-id-here} --document-name AWS-StartPortForwardingSession --parameters '{"portNumber":["8080"],"localPortnumber":["8089"]}'
ssm and socat port forwarding in action

If you setup socat correctly to listen on port 8080, then the connection should be opened and accepted.

Now you can simply open a web browser locally and direct it to http://localhost:8089/ganglia to access ganglia on the remote EMR master node.

Accessing EMR cluster memory stats via the remote port forwarded session.


AWS SSM is a useful tool to get access to instances in a secure, audited fashion without needing to open up risky SSH access or other remote ports to the public internet.

When constrained and needing a jump across to an instance without the SSM agent you can leverage tools to help. Socat is one such tool that can facilitate this within the private network.

Ingest CloudWatch Logs to a Splunk HEC with Lambda and Serverless

cloudwatch logs to splunk HEC via Lambda

I recently came across a scenario requiring CloudWatch log ingestion to a private Splunk HEC (HTTP Event Collector).

The first and preferred method of ingesting CloudWatch Logs into Splunk is by using AWS Firehose. The problem here though is that Firehose only seems to support an endpoint that is open to the public.

This is a problem if you have a Splunk HEC that is only available inside of a VPC and there is no option to proxy public connections back to it.

The next thing I looked at was the Splunk AWS Lambda function template to ingest CloudWatch logs from Log Group events. I had a quick look and it seems pretty out of date, with synchronous functions and libraries in use.

So, I decided to put together a small AWS Lambda Serverless project to improve on what is currently out there.

You can find the code over on Github.

The new version has:

  • async / await, and for promised that wrap the synchronous libraries like zlib.
  • A module that handles identification of Log Group names based on a custom regex pattern. If events come from log groups that don’t match the naming convention, then they get rejected. The idea is that you can write another small function that auto-subscribes Log Groups.
  • Secrets Manager integration for loading the Splunk HEC token from Secrets Manager. (Or fall back to a simple environment variable if you like).
  • Serverless framework wrapper. Pass in your Security Group ID, Subnet IDs and tags, and let serverless CLI deploy the function for you.
  • Lambda VPC support by default. You should deploy this Lambda function in a VPC. You could change that, but my idea here is that most enterprises would be running their own internal Splunk inside of their corporate / VPC network. Change it by removing the VPC section in serverless.yml if you do happen to have a public facing Splunk.

You deploy it using Serverless framework, passing in your VPC details and a few other options for customisation.

serverless deploy --stage test \
  --iamRole arn:aws:iam::123456789012:role/lambda-vpc-execution-role \
  --securityGroupId sg-12345 \
  --privateSubnetA subnet-123 \
  --privateSubnetB subnet-456 \
  --privateSubnetC subnet-789 \
  --splunkHecUrl https://your-splunk-hec:8088/services/collector \
  --secretManagerItemName your/secretmanager/entry/here

Once configured, it’ll pick up any log events coming in from Log Groups you’ve ‘subscribed’ it to (Lambda CloudWatch Logs Triggers).

add your lambda CloudWatch logs triggers and enabled them for automatic ingestion of these to Splunk

These events get enriched with extra metadata defined in the function. The metadata is derived by default from the naming convention used in the CloudWatch Log Groups. Take a close look at the included Regex pattern to ensure you name your Log Groups appropriately. Finally, they’re sent to your Splunk HEC for ingestion.

For an automated Log Group ingestion story, write another small helper function that:

  • Looks for Log Groups that are not yet subscribed as CloudWatch Logs Triggers.
  • Adds them to your CloudWatch to Splunk HEC function as a trigger and enables it.

In the future I might add this ‘automatic trigger adding function’ to the Github repository, so stay tuned!