Building a Pi Kubernetes Cluster – Part 3 – Worker Nodes and MetalLB

Building a Raspberry Pi Kubernetes Cluster - part 3 - worker nodes featured image

This is the third post in this series and the focus will be on completing the Raspberry Pi Kubernetes cluster by adding a worker node. You’ll also setup a software based load-balancer implementation designed for bare metal Kubernetes Clusters by leveraging MetalLB.

Here are some handy links to other parts in this blog post series:

By now you should have 1 x Pi running as the dedicated Pi network router, DHCP, DNS and jumpbox, as well as 1 x Pi running as the cluster Master Node.

Of course it’s always best to have more than 1 x Master node, but as this is just an experimental/fun setup, one is just fine. The same applies to the Worker nodes, although in my case I added two workers with each Pi 4 having 4GB RAM.

Joining a Worker Node to the Cluster

Start off by completing the setup steps as per the Common Setup section in Part 2 with your new Pi.

Once your new Worker Pi is ready and on the network with it’s own static DHCP lease, join it to the cluster (currently only the Master Node) by using the kubeadm join command you noted down when you first initialised your cluster in Part 2.

E.g.

sudo kubeadm join 10.0.0.50:6443 --token kjx8lp.wfr7n4ie33r7dqx2 \
     --discovery-token-ca-cert-hash sha256:25a997a1b37fb34ed70ff4889ced6b91aefbee6fb18e1a32f8b4c8240db01ec3

After a few moments, SSH back to your master node and run kubectl get nodes. You should see the new worker node added and after it pulls down and starts the weave net CNI image it’s status will change to Ready.

kubernetes worker node added to cluster

Setting up MetalLB

The problem with a ‘bare metal’ Kubernetes cluster (or any self-installed, manually configured k8s cluster for that matter) is that it doesn’t have any load-balancer implementation to handle LoadBalancer service types.

When you run Kubernetes on top of a cloud hosting platform like AWS or Azure, they are backed natively by load-balancer implementations that work seamlessly with those cloud platform’s load-balancer services. E.g. classic application or elastic load balancers with AWS.

However, with a Raspberry Pi cluster, you don’t have anything fancy like that to provide LoadBalancer services for your applications you run.

MetalLB provides a software based implementation that can work on a Pi cluster.

Install version 0.8.3 of MetalLB by applying the following manifest with kubectl:

kubectl apply -f https://gist.githubusercontent.com/Shogan/d418190a950a1d6788f9b168216f6fe1/raw/ca4418c7167a64c77511ba44b2c7736b56bdad48/metallb.yaml

Make sure the MetalLB pods are now up and running in the metallb-system namespace that was created.

metallb pods running

Now you will create a ConfigMap that will contain the settings your MetalLB setup will use for the cluster load-balancer services.

Create a file called metallb-config.yaml with the following content:

apiVersion: v1
kind: ConfigMap
metadata:
  namespace: metallb-system
  name: config
data:
  config: |
    address-pools:
    - name: default
      protocol: layer2
      addresses:
      - 10.23.220.88-10.23.220.98

Update the addresses section to use whichever range of IP addresses you would like to assign for use with MetalLB. Note, I only used 10 addresses as below for mine.

Apply the configuration:

kubectl apply -f ./metallb-config.yaml

Setup Helm in the Pi Cluster

First of all you’ll need an ARM compatible version of Helm. Download it and move it to a directory that is in your system PATH. I’m using my Kubernetes master node as a convenient location to use kubectl and helm commands from, so I did this on my master node.

Install Helm Client

export HELM_VERSION=v2.9.1
wget https://kubernetes-helm.storage.googleapis.com/helm-$HELM_VERSION-linux-arm.tar.gz
tar xvzf helm-$HELM_VERSION-linux-arm.tar.gz
sudo mv linux-arm/helm /usr/bin/helm

Install Helm Tiller in the Cluster

Use the following command to initialise the tiller component in your Pi cluster.

helm init --tiller-image=jessestuart/tiller --service-account tiller --override spec.selector.matchLabels.'name'='tiller',spec.selector.matchLabels.'app'='helm' --output yaml | sed 's@apiVersion: extensions/v1beta1@apiVersion: apps/v1@' | kubectl apply -f -

Note: it uses a custom image from jessestuart/tiller (as this is ARM compatible). The command also replaces the older api spec for the deployment with the apps/v1 version, as the older beta one is no longer applicable with Kubernetes 1.16.

Deploy an Ingress Controller with Helm

Now that you have something to fulfill LoadBalancer service types (MetalLB), and you have Helm configured, you can deploy an NGINX Ingress Controller with a LoadBalancer service type for your Pi cluster.

helm install --name nginx-ingress stable/nginx-ingress --set rbac.create=true --set controller.service.type=LoadBalancer

If you list out your new ingress controller pods though you might find a problem with them running. They’ll likely be trying to use x86 architecture images instead of ARM. I manually patched my NGINX Ingress Controller deployment to point it at an ARM compatible docker image.

kubectl set image deployment/nginx-ingress-controller     nginx-ingress-controller=quay.io/kubernetes-ingress-controller/nginx-ingress-controller-arm:0.26.1

After a few moments the new pods should now show as running:

new nginx ingress pods running with ARM image

Now to test everything, you can grab the external IP that should have been assigned to your NGINX ingress controller LoadBalancer service and test the default NGINX backend HTTP endpoint that returns a simple 404 message.

List the service and get the EXTERNAL-IP (this should sit in the range you configured MetalLB with):

kubectl get service --selector=app=nginx-ingress

Curl the NGINX Ingress Controller LoadBalancer service endpoint with a simple GET request:

curl -i http://10.23.220.88

You’ll see the default 404 not found response which indicates that the controller did indeed receive your request from the LoadBalancer service and directed it appropriately down to the default backend pod.

the nginx default backend 404 response

Concluding

At this point you’ve configured:

  • A Raspberry Pi Kubernetes network Router / DHCP / DNS server / jumpbox
  • Kubernetes master node running the master components for the cluster
  • Kubernetes worker nodes
  • MetalLB load-balancer implementation for your cluster
  • Helm client and Tiller agent for ARM in your cluster
  • NGINX ingress controller

In part 1, recall you setup some iptables rules on the Router Pi as an optional step?

These PREROUTING AND POSTROUTING rules were to forward packets destined for the Router Pi’s external IP address to be forwarded to a specific IP address in the Kubernetes network. In actual fact, the example I provided was what I used to forward traffic from the Pi router all the way to my NGINX Ingress Controller load balancer service.

Revisit this section if you’d like to achieve something similar (access services inside your cluster from outside the network), and replace the 10.23.220.88 IP address in the example I provided with the IP address of your own ingress controller service backed by MetalLB in your cluster.

Also remember that at this point you can add as many worker nodes to the cluster as you like using the kubeadm join command used earlier.

How to setup a basic Kubernetes cluster and add an NGINX Ingress Controller on DigitalOcean

Most of the steps in this how to post can be applied to any Kubernetes cluster to get an NGINX Ingress Controller deployed, so you don’t necessarily have to be running Kubernetes in DigitalOcean. With that said, let’s go through the process of setting up a Kubernetes cluster with NGINX Ingress Controller on DigitalOcean.

DigitalOcean have just officially announced their own Kubernetes offering so this guide covers initial deployment of a basic worker node pool on DigitalOcean, and then moves on to deploying an Ingress Controller setup.

Note: If you already have a Kubernetes cluster setup and configured, then you can skip the initial cluster and node pool provisioning step below and move on to the Helm setup part.

Deploy a Kubernetes node pool on DigitalOcean

You could simply do this with the Web UI console (which makes things really simple), but here I’ll be providing the doctl commands to do this via the command line.

First of all, if you don’t have it already download and setup the latest doctl release. Make sure it’s available in your PATH.

Initialise / authenticate doctl. Provide your own API key when prompted.

doctl auth init

Right now, the help documentation in doctl version 1.12.2 does not display the kubernetes related commands arguments, but they’re available and do work.

Create a new Kubernetes cluster with just a single node of the smallest size (you can adjust this to your liking of course). I want a nice cheap cluster with a single node for now.

doctl k8s cluster create example-cluster --count=1 --size=s-1vcpu-2gb

The command above will provision a new cluster with a default node pool in the NYC region and wait for the process to finish before completing. It’ll also update your kubeconfig file if it detects one on your system.

output of the doctl k8s cluster create command

Once it completes, it’ll return and you’ll see the ID of your new cluster along with some other details output to the screen.

Viewing the Kubernetes console in your browser should also show it ready to go. You can download the config from the web console too if you wish.

Kubeconfig setup

If you’re new to configuring kubectl to manage Kubernetes, follow the guide here to use your kube config file that DigitalOcean provides you with.

the load balancer that will front your Ingress Controller on DigitalOcean Kubernetes

Handling different cluster contexts

With kubectl configured, test that it works. Make sure you’re in your new cluster’s context.

kubectl config use-context do-nyc1-example-cluster

If you’re on a Windows machine and use PowerShell and have multiple Kubernetes clusters, here is a simple set of functions I usually add to my PowerShell profile – one for each cluster context that allows easy switching of contexts without having to type out the full kubectl command each time:

Open your PowerShell profile with:

notepad $profile

Add the following (one for each context you want) – make sure you replace the context names with your own cluster names:

function kubecontext-minikube { kubectl config use-context minikube }
function kubecontext-seank8s { kubectl config use-context sean.k8s.local }
function kubecontext-digitalocean { kubectl config use-context do-nyc1-example-cluster }

Simply enter the function name and hit enter in your PS session to switch contexts.

If you didn’t have any prior clusters setup in your kubeconfig file, you should just have your new DigitalOcean cluster context selected already by default.

Deploy Helm to your cluster

Time to setup Helm. Follow this guide to install and configure helm using kubectl.

helm logo

Deploy the Helm nginx-ingress chart to enable an Ingress Controller on DigitalOcean in your Kubernetes cluster

Now that you have helm setup, you can easily deploy an Ingress Controller to your cluster using the nginx helm chart (package).

helm install --name nginx-ingress stable/nginx-ingress --set service.type=LoadBalancer --namespace default

When you specify the service.type of “LoadBalancer”, DigitalOcean will provision a LoadBalancer that fronts this Kubernetes service on your cluster. After a few moments the Helm deployment should complete (it’ll run async in the background).

You can monitor the progress of the service setup in your cluster with the following command:

kubectl --namespace default get services -o wide -w nginx-ingress-controller

Open the Web console, go to Networking, and then look for Load Balancers.

You should see your new NGINX load balancer. This will direct any traffic through to your worker pool node(s) and into the Kubernetes Service resource that fronts the pods running NGINX Ingress.

view of the digitalocean load balancer

At this point you should be able to hit the IP Address in your web browser and get the default nginx backend for ingress (with a 404 response). E.g.

Great! This means it’s all working so far.

Create a couple of basic web deployments inside your cluster

Next up you’ll create a couple of very simple web server Deployments running in single pods in your cluster’s node pool.

Issue the following kubectl command to create two simple web deployments using Google’s official GCR hello-app image. You’ll end up with two deployments and two pods running separately hosted “hello-app” web apps.

kubectl run web-example1 --image=gcr.io/google-samples/hello-app:2.0 --port=8080
kubectl run web-example2 --image=gcr.io/google-samples/hello-app:2.0 --port=8080

Confirm they’re up and running wth 1 pod each:

kubectl get deployments
NAME                            DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
web-example1                    1         1         1            1           12m
web-example2                    1         1         1            1           23m

Now you need a service to back the new deployment’s pods. Expose each deployment with a simple NodePort service on port 8080:

kubectl expose deployment/web-example1 --type="NodePort" --port 8080
kubectl expose deployment/web-example2 --type="NodePort" --port 8080

A NodePort service will effectively assign a port number from your cluster’s service node port range (default between 30000 and 32767) and each node in your cluster will proxy that specific port into your Service on the port you specify. Nodes are not available externally by default and so creating a NodePort service does not expose your service externally either.

Check the services are up and running and have node ports assigned:

kubectl get services
NAME                            TYPE           CLUSTER-IP       EXTERNAL-IP      PORT(S)                      AGE
web-example1                    NodePort       10.245.125.151   <none>           8080:30697/TCP               13m
web-example2                    NodePort       10.245.198.91    <none>           8080:31812/TCP               24m

DNS pointing to your Load Balancer

Next you’ll want to set up a DNS record to point to your NGINX Ingress Controller Load Balancer IP address. Grab the IP address from the new Kubernetes provisioned Load Balancer for Ingress from the DigitalOcean web console.

Create an A record to point to this IP address.

Create your Ingress Rules

With DNS setup, create a new YAML file called fanout.yaml:

This specification will create an Kubernetes Ingress Resource which your Ingress Controller will use to determine how to route incoming HTTP requests to your Ingress Controller Load Balancer.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
  name: simple-fanout-example
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
  - host: example-ingress.yourfancydomainnamehere.com
    http:
      paths:
      - path: /*
        backend:
          serviceName: web-example1
          servicePort: 8080
      - path: /web2/*
        backend:
          serviceName: web-example2
          servicePort: 8080

Make sure you update the host value under the first rule to point to your new DNS record (that fronts your Ingress Controller Load Balancer). i.e. the “example-ingress.yourfancydomainnamehere.com” bit needs to change to your own host / A record you created that points to your own Load Balancer IP address.

The configuration above is a typical “fanout” ingress setup. It provides two rules for two different paths on the host DNS you setup and allows you to route HTTP traffic to different services based on the hostname/path.

This is super useful as you can front multiple different services with a single Load Balancer.

  • example-ingress.yourfancydomainnamehere.com/* -> points to your simple web deployment backed by the web-example1 service you exposed it on. Any request that does not match any other rule will be directed to this service (*).
  • example-ingress.yourfancydomainnamehere.com/web2/* -> points to your web-example2 service. If you hit your hostname with the path /web2/* the request will go to this service.

Testing

Try browse to the first hostname using your own DNS record and try different combinations that match the rules you defined in your ingress rule on HTTP. You should get the web-example1 “hello-app” being served from your web-example1 pod for any request that does not match /web2/*. E.g. /foo.

For /web2/* you should get the web-example2 “hello-app” default web page. It’ll also display the name of the pod it was served from (in my case web-example2-75fd68f658-f8xcd).

Conclusion

Congratulations! You now have a single Load Balancer fronting an NGINX Ingress Controller on DigitalOcean Kubernetes.

You can now expose multiple Kubernetes run services / deployments from a single Ingress and avoid the need to have multiple Load Balancers running (and costing you money!)

Streamlining your Kubernetes development process with Draft (and Helm)

Draft is a tool built for developers who do their dev work against a Kubernetes environment (whether it be a live cluster of a Minikube instance).

It really helps speed up development time by helping out with the code -> build -> run -> test dev cycle. It does this by scaffolding out a Dockerfile and Helm Chart template pack customised for your app with a single command and then by building and deploying your application image to your Kubernetes environment with a second.

Setting up Draft and a basic .NET Core Web API project

First off, make sure you have already set up your kubectl configuration to be able to talk to your Kubernetes cluster, and have also setup and configured Helm.

Set the Draft binary up in a known system path on your machine after downloading it from the Draft Releases page.

Run draft init to initialise Draft. It’ll drop it’s configuration in a subdirectory of your user profile directory called .draft.

Create a new .NET Core 2.1 ASP.net project and select Web API as the type.

Open a shell and navigate over to the root project directory of your new .NET Core 2.1 app. E.g. cd solution\projectname

Run draft create to setup Draft with your new project. This is where the Draft magic happens. Essentially, Draft will:

  • Detect your application code language. (In this case csharp)
  • Create a Dockerfile for your app
  • Set up a Helm chart and necessary template structure to easily deploy your app into Kubernetes direct from your development machine

You should see output similar to this:

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> draft create
--> Draft detected JSON (97.746232%)
--> Could not find a pack for JSON. Trying to find the next likely language match...
--> Draft detected XML (1.288026%)
--> Could not find a pack for XML. Trying to find the next likely language match...
--> Draft detected csharp (0.914658%)
--> Ready to sail

At this point you could run draft up and if you have a container registry setup for Draft on your machine already, it would build and push your Docker image and then deploy your app into Kubernetes. However, if you don’t yet have a container registry setup for Draft you’ll need to do that first.

draft config set registry docker.io/yourusernamehere

PS, just make sure your local development machine has credentials setup for your container registry. E.g. Docker Hub.

Run your app with Draft (and help from Helm)

Now run draft up

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> draft up
Draft Up Started: 'draftdotnetcorewebapi': 01CH1KFSSJWDJJGYBEB3AZAB01
draftdotnetcorewebapi: Building Docker Image: SUCCESS ⚓  (45.0376s)
draftdotnetcorewebapi: Pushing Docker Image: SUCCESS ⚓  (10.0875s)
draftdotnetcorewebapi: Releasing Application: SUCCESS ⚓  (3.3175s)
Inspect the logs with `draft logs 01CH1KFSSJWDJJGYBEB3AZAB01`

Awesome. Draft built your application into a Docker image, pushed that image up to your container registry and then released your application using the Helm Chart it scaffolded for you when you initially ran draft create.

Take a look at Kubernetes. Your application is running.

kubectl get deployments

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> kubectl get deployments
NAME                           DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
draftdotnetcorewebapi-csharp   1         1         1            1           7m

Iterating on your application

So your app is up and running in Kubernetes, now what?

Let’s make some changes to the Helm chart to get it deploying using a LoadBalancer (or NodePort if you’re using Minikube). Let’s also add a new Api Controller called NamesController that simply returns a JSON array of static names with a GET request.

using Microsoft.AspNetCore.Mvc;

namespace draftdotnetcorewebapi.Controllers
{
    [Route("api/[controller]")]
    [ApiController]
    public class NamesController : ControllerBase
    {
        [HttpGet]
        public ActionResult<IEnumerable> Get()
        {
            return new string[] { "Wesley", "Jean-Luc", "Damar", "Guinan" };
        }
    }
}

Change your charts/csharp/values.yaml file to look like this (use NodePort if you’re trying this out with Minikube):

using Microsoft.AspNetCore.Mvc;
# Default values for c#.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
replicaCount: 1
image:
  pullPolicy: IfNotPresent
service:
  name: dotnetcore
  type: LoadBalancer
  externalPort: 8080
  internalPort: 80
resources:
  limits:
    cpu: 1
    memory: 256Mi
  requests:
    cpu: 250m
    memory: 256Mi
ingress:
  enabled: false

Run draft up again. Your app will get built and released again. This time you’ll have a LoadBalancer service exposed and your updated application with the new API endpoint will be available within seconds.

This time however Draft was clever enough to know that it didn’t need a new Helm release. Using Helm, it determined that an existing release was already in place and instead did a helm upgrade underneath the covers. Test it for yourself with a helm list

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> helm list
NAME                            REVISION        UPDATED                         STATUS          CHART                           NAMESPACE
draftdotnetcorewebapi           2               Wed Jun 27 23:10:11 2018        DEPLOYED        csharp-v0.1.0                   default

Check the service’s External IP / URL and try it out by tacking on /api/names on the end to try out the new Names API endpoint.

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi>PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> kubectl get service draftdotnetcorewebapi-csharp -o wide
NAME                           TYPE           CLUSTER-IP     EXTERNAL-IP                                                               PORT(S)          AGE       SELECTOR
draftdotnetcorewebapi-csharp   LoadBalancer   100.66.92.87   aezzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.us-east-2.elb.amazonaws.com   8080:31381/TCP   32m       app=draftdotnetcorewebapi-csharp

Draft clean up

To take your app down and delete the Helm release, simply issue a draft delete on the command line.

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> helm list
NAME                            REVISION        UPDATED                         STATUS          CHART                           NAMESPACE
draftdotnetcorewebapi           2               Wed Jun 27 23:10:11 2018        DEPLOYED        csharp-v0.1.0                   default

Check the service’s External IP / URL and try it out by tacking on /api/names on the end to try out the new Names API endpoint.

PS C:\git\draftdotnetcorewebapi\draftdotnetcorewebapi> draft delete
app 'draftdotnetcorewebapi' deleted

That’s all there is to it.

Draft really helps ease the monotony and pain of setting up a new project and getting it all working with Docker and Kuberenetes. It vastly improves your development cycle times too. Check it out and start using it to save time!

Setting up Helm for Kubernetes (with RBAC) and Deploying Your First Chart

I was pointed to Helm the other day and decided to have a quick look at it. I tasked myself with setting it up in a sandbox environment and deploying a pre-packaged application (a.k.a chart, or helm package) into my Kubernetes sandbox environment.

Helm 101

The best way to think about Helm is as a ‘package manager for Kubernetes’. You install Helm as a cli tool (It’s written in Golang) and all the operations it provides to you, you’ll find are very similar to those of common package managers like npm etc…

Helm has a few main concepts.

  • As mentioned above, a ‘Chart’ is a package for Helm. It contains the resource definitions required to run an app/tool/service on a Kubernetes cluster.
  • A ‘Repository’ is where charts are stored and shared from
  • A ‘Release’ is an instance of a chart running in your Kubernetes cluster. You can create multiple releases for multiple instances of your app/tool/service.

More info about Helm and it’s concepts can be found on the Helm Quickstart guide. If however, you wish to get stuck right in, read on…

This is a quick run-down of the tasks involved in setting it up and deploying a chart (I tried out kube-slack to provide slack notifications for failed kubernetes operations in my sandbox environment to my slack channel).

Setting up Helm

Download and unzip the latest Helm binary for your OS. I’m using Windows so I grabbed that binary, unblocked it, and put in a folder found in my path. Running a PowerShell session I can simply type:

helm

Helm executes and provides a list of possible options.

Before you continue with initialising Helm, you should create a service account in your cluster that Helm will use to manage releases across namespaces (or in a particular namespace you wish it to operate in). For testing its easiest to set up the service account to use the default built-in “cluster-admin” role. (To be more secure you should set up Tiller to have restricted permissions and even restrict it based on namespace too).

To setup the basic SA with the cluster-admin role, you’ll need a ClusterRoleBinding to go with the SA. Here is the config you need to set both up.

apiVersion: v1
kind: ServiceAccount
metadata:
  name: tillersa
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
  name: tillersa-clusterrolebinding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
  - kind: ServiceAccount
    name: tillersa
    namespace: kube-system

Run kubectl create and point to this config to set up the SA and ClusterRoleBinding:

kubectl create -f .\tillersa-and-cluster-rolebinding.yaml

Now you can do a helm initialisation.

helm init --service-account tillersa --tiller-namespace kube-system

If all went well, you’ll get a message stating it was initialised and setup in your cluster.

Run:

kubectl get pods -n=kube-system

and you should see your new tiller-deploy pod running.

Deploying Charts with Helm

Run helm list to see that you currently have no chart releases deployed.

helm list

You can search the public Helm repository for charts (applications/tools/etc) that you can now easily deploy into your cluster.

helm search

Search for ‘grafana’ with helm. We’ll deploy that to the cluster in this example.

helm search grafana

Next up you might want to inspect and discover more about the chart you’re going to install. This is useful to see what sort of configuration parameters you can pass to it to customise it to your requirements.

helm inspect grafana

Choose a namespace in your cluster to deploy to and a service type for Grafana (to customise it slightly to your liking) and then run the following, replacing the service.type and service.port values for your own. For example you could use a ClusterIP service instead of LoadBalancer like I did:

helm install --name sean-grafana-release stable/grafana --set service.type=LoadBalancer --set service.port=8088 --namespace sean-dev

Helm will report back on the deployment it started for your release.

The command is not synchronous so you can run helm status to report on the status of a release.

helm status sean-grafana-release

Check on deployments in your namespace with kubectl or the Kubernetes dashboard and you should find Grafana running happily along.

In my case I used a LoadBalancer service, so my cluster being AWS based spun up an ELB to front Grafana. Checking the ELB endpoint on port 8088 as I specified in my Helm install command sure enough shows my new Grafana app’s login page.

The chart ensures all the necessary components are setup and created in your cluster to run Grafana. Things like the deployment, the service, service account, secrets, etc..

In this case the chart outputs instructions on how to retrieve your Grafana admin password for login. You can see how to get that in the output of your release.

Tidy Up

To clean up and delete your release simply do:

helm delete sean-grafana-release

Concluding

Done!

There is plenty more to explore with helm. If you wish to change your helm configuration with helm init, look into using the –upgrade parameter. helm reset can be used to remove Helm from your cluster and there are many many more options and scenarios that could be covered.

Explore further with the helm command to see available commands and do some digging.

Next up for me I’ll be looking at converting one of my personal applications into a chart that I can deploy into Kubernetes.